Einfache Helikalinterpolation
Bei der vereinfachten Helikalprogrammierung wird keine Steigung, sondern nur ein Zielpunkt definiert. Abhängig vom Zielpunkt ergibt sich eine Helikalbewegung mit maximal einer vollständigen Umdrehung.
Syntaxbeispiel für Ebene G17: |
G02 | G03 X.. Y.. Z.. I.. J.. | R.. |
G02 | G03 | Kreisinterpolation CW / CCW |
X.. Y.. | Zielpunkt in der Ebene XY in [mm, inch] |
Z.. | Zielpunkt auf der Helixachse senkrecht zur Ebene XY in [mm, inch] |
I.. J.. | Lage des Kreismittelpunktes der Interpolation in der Ebene XY (I in X, J in Y) in [mm, inch], entsprechend G161/G162. |
R.. | Radius des zu interpolierenden Kreises (alternativ zu I,J) in [mm, inch] |
Syntax entsprechend der angewählten Interpolationsebene: |
Ebene | Interpolations- | Zielpunkt | Zielpunkt | Mittelpunkt /Radius |
G17 | G02/G03 | X..Y.. | Z.. | I..J../R |
G18 | G02/G03 | Z..X.. | Y.. | K..I../R |
G19 | G02/G03 | Y..Z.. | X.. | J..K../R |
Programmierbeispiel
Helikalinterpolation in der Ebene XY im Gegenuhrzeigersinn
Folgende "Helix" soll gefahren werden:
Startpunkt a: X-10 Y0 Z0
Zielpunkt b: Z20
Helixmittelpunkt I, J: Nullpunkt
N10 G17 G90 X-10 Y0 Z0 F500 G161
N20 G03 I0 J0 Z20